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Abstract: Electrical materials play a pivotal role in electrical engineering, yet conventional research
methodologies relying on experimental approaches and theoretical calculations face challenges of low
efficiency and high costs. The rapid advancement of artificial intelligence (AI) technology has
introduced novel tools for electrical material research, significantly enhancing the efficiency of
material design, performance prediction, and experimental optimization. This paper systematically
reviews recent progress in AI applications across semiconductor, alloy, energy storage, and metallic
materials. In semiconductor research, machine learning has improved analytical precision through
optimization of Hubbard U parameters and prediction of perovskite defect transition levels. For alloy
materials, AI combined with active learning strategies has accelerated the discovery and performance
optimization of high-entropy alloys.Our analysis reveals that AI technology substantially reduces
material development cycles and experimental costs through multi-source data integration,
quantitative model construction, and multi-objective optimization strategies. Looking forward, with
advancements in data science and computational capabilities, AI is poised to play an increasingly
critical role in multi-scale material design, performance prediction, and novel material development
for electrical engineering, thereby driving technological innovations in power and electronic systems.
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1.Introduction

Electrical engineering materials form the foundational elements of modern electrical systems,
encompassing conductive materials, semiconductors, magnetic materials, and others, whose
performance directly governs the efficiency of power generation, transmission, and utilization.
Conventional research methodologies relying on experimental trial-and-error and theoretical modeling
face significant challenges due to material complexity, resulting in prolonged development cycles and
high costs. This necessitates the adoption of efficient and precise alternatives. Recent breakthroughs in
artificial intelligence (AI) technologies have introduced paradigm-shifting advancements in materials
science, particularly in data-driven material design, performance prediction, and experimental
optimization.Nevertheless, critical challenges persist, including the curation of high-quality datasets,
integration of multiscale models, and synergistic experimental validation. As computational power and
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algorithms evolve, AI is poised to exert profound impacts on the multidimensional design of electrical
engineering materials, offering transformative solutions for energy, electronics, and quantum
technologies.

2. Research status

2.1 Applications of Artificial Intelligence in Semiconductor Materials

Semiconductor materials, as the cornerstone of modern electronic devices, exhibit critical
sensitivity where subtle variations in their properties can profoundly impact device performance. The
integration of AI technologies in this field has not only enhanced the accuracy of material property
predictions but also accelerated the discovery of novel materials. Through advanced machine learning
algorithms, researchers can extract pivotal parameters from complex datasets, thereby optimizing
material design and advancing semiconductor materials science.

Liu Hengyu[1]effectively addressed the self-interaction error in III-V semiconductor materials by
implementing machine learning Bayesian optimization within the density functional theory framework
incorporating Hubbard U correction (DFT+U). This approach provides a comprehensive methodology
for enhanced precision. By optimizing Hubbard U parameters for 13 semiconductor materials through
Bayesian machine learning and subsequent DFT+U implementation, the study rectified inherent errors
in bandgap and electronic band structure descriptions arising from standard DFT calculations.
Comparative analyses with HSE06 hybrid functional results and experimental data established a
benchmark for optimal U parameter selection in III-V semiconductors. This methodology significantly
mitigates computational limitations in III-V semiconductor research, injecting new momentum into
previously constrained investigations.Wu Xiaoyu[2]pioneered a data-driven machine learning
framework for predicting defect transition levels in perovskite materials. Through comparative analysis
of three distinct machine learning models - K-nearest neighbors regression (KNR), support vector
regression (SVR), and histogram gradient boosting regression (HGBR)-the study identified HGBR as
the superior predictive model. Subsequent validation demonstrated its efficacy in predicting charge
transition levels for two perovskite variants. This breakthrough provides novel insights for defect
engineering in perovskite semiconductors, enhancing research efficiency and enabling customized
material development. Such advancements hold substantial implications for optoelectronics, solar cell
technology, and quantum computing applications.

Future research directions necessitate deeper integration of AI with quantum mechanical
principles and statistical physics, particularly through multiscale modeling approaches to address
interfacial heterostructures and non-equilibrium processes in semiconductors. Concurrently, developing
interpretable machine learning models will be crucial for elucidating the physical mechanisms
underlying material optimization, thereby facilitating a paradigm shift from empirical design to
theory-guided material engineering. With continued algorithmic innovation and interdisciplinary
collaboration, AI is poised to play pivotal roles in designing next-generation semiconductors (e.g.,
topological materials, two-dimensional materials), laying theoretical foundations for advanced
electronic, photonic, and quantum devices.



Scientific Innovation in Asia
ISSN: 3029-1259 Vol.3,Issue 1 DOI: 10.12410/sia0201024

2.2 Applications of Artificial Intelligence in Alloy Materials

Performance optimization of alloy materials constitutes a complex process governed by
multifaceted interactions. The integration of AI technologies has significantly enhanced the efficiency
of this endeavor. Machine learning models empower researchers to identify critical governing factors
from extensive experimental datasets, predict alloy properties, and thereby guide experimental design
and material refinement, accelerating the discovery and application of novel alloy systems.

Seyedmehrab Hosseini[3] et al. employed machine learning to predict and optimize the hardness of
Nb-Ti-V-Zr high-entropy refractory alloys. Their experimental investigations identified three critical
descriptors-atomic size difference, configuration mixing entropy, and average electronegativity
disparity -providing fundamental insights for hardness optimization in high-entropy refractory alloys.
Ziyuan Rao et al. [4] developed an active learning strategy integrating machine learning with power
function theory, thermodynamic calculations, and experimental validation to expedite high-entropy
alloy discovery. Compared to conventional alloy design methodologies, their approach demonstrated
superior efficiency in novel material identification while substantially reducing experimental costs and
timelines. Similarly, Chonghang Zhao et al. [5] investigated metallic precursor dealloying through
machine learning algorithms, predicting 132 potential ternary dealloying systems. Notably, only 59
systems satisfied conventional enthalpy-mixing criteria, highlighting the necessity of combining
machine learning predictions with experimental verification to expand viable alloy systems.

Future advancements will require synergistic integration of AI with cross-scale simulation
methodologies such as phase-field theory and molecular dynamics, enabling multiscale modeling
frameworks bridging electronic structures to macroscopic properties. The development of interpretable
machine learning architectures will elucidate the physical essence underlying descriptor-property
correlations (e.g., dislocation dynamics, interface effects), driving a paradigm shift from "black-box
prediction" to "mechanism-driven" alloy design. Furthermore, the implementation of generative models
and reinforcement learning promises global optimization of composition-processing-property
relationships, establishing novel pathways for theoretically designed ultrahigh-performance alloys.
Through innovative algorithm development and deep convergence with multiphysics theories, AI will
catalyze the transition from empirical exploration to rational design in alloy materials, delivering
transformative material solutions for aerospace, energy infrastructure, and related strategic sectors.

2.3 Applications of Artificial Intelligence in Energy Storage Materials

The growing global energy demand has intensified the need for high -performance energy storage
materials. The application of AI technologies, particularly through machine learning model
development, provides innovative tools for advancing energy storage research. By leveraging big data
analytics and machine learning frameworks, researchers can rapidly screen and design
electrode/electrolyte materials with tailored properties, accelerating material discovery and
technological innovation in energy storage systems.

Xu Jing and Wang Yuqi [6]et al. developed a multi-fidelity transfer framework integrated with
machine learning models for secondary battery material simulations through big data methodologies.
This approach enables rapid prediction of ion transport properties, enhancing understanding of
material-battery performance correlations and facilitating the development of next-generation
solid-state secondary battery materials. Bowen Deng[7] et al. introduced the Crystal Hamiltonian Graph
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Neural Network (CHGNet), a graph neural network-based machine-learned interatomic potential
(MLIP) capable of simulating universal potential energy surfaces for large-scale systems with complex
electronic interactions. CHGNet propagates atomic information via nodes and edges while preserving
translational, rotational, and permutation invariances. It accepts crystal structures with unknown atomic
charges as input and outputs corresponding energies, forces, stresses, and magnetic moments. By
incorporating magnetic moments, CHGNet accurately captures electron orbital occupations,
significantly enhancing its capacity to describe atomic and electronic degrees of freedom. Experimental
validation demonstrated CHGNet's superior performance on the MPtrj dataset, exhibiting minimal
mean absolute errors in energy, force, and stress predictions. Crucially, CHGNet successfully
simulated ion rearrangements associated with charge transfer, providing critical insights into phase
transitions in LiMnO₂ cathode materials. Chade Lv et al. [8] investigated machine learning (ML)
applications in lithium-ion battery (LIB) material development and state prediction. ML
implementations in LIBs primarily focus on two domains: predicting material properties and estimating
battery states. ML models enable rapid screening of electrode/electrolyte materials with desired
characteristics, while advanced battery management systems (BMS) utilize ML techniques for precise
state-of-charge (SOC) and state-of-health (SOH) predictions. These advancements not only accelerate
material discovery but also enhance LIB performance and safety through optimized battery
management.

2.4 Applications of Artificial Intelligence in Metallic Materials

Metallic materials play pivotal roles in electrical and electronic systems. AI technologies,
particularly machine learning algorithms, offer novel solutions for performance prediction and
optimization of metallic materials. By analyzing vast experimental datasets, AI systems identify critical
factors influencing material properties, enabling optimized designs that enhance performance and
reliability.

Zhen-bing[9] et al. employed machine learning algorithms to predict electrical contact wear in
brass materials, evaluating the effects of load, sliding velocity, displacement amplitude, current
intensity, and surface roughness on contact resistance variations. They established predictive models
using random forest (RF), support vector regression (SVR), and backpropagation neural network
(BPNN) algorithms, trained and validated against experimental data. Their analysis revealed that
increased load, current, and surface roughness reduce stabilized average resistance, whereas higher
displacement amplitude and frequency elevate resistance. These findings provide a novel methodology
for reliability assessment of electrical contact materials and wear-induced resistance prediction. Mi
Zhishan[10] combined first-principles calculations with machine learning to investigate carbon content
effects on hydrogen resistance in steel materials. They developed a high-accuracy machine learning
force field (MLFF) for Fe-C-H systems using neural networks trained on ab initio molecular dynamics
(AIMD) data, enabling precise predictions of atomic energies and forces. This framework offers a new
tool for understanding hydrogen diffusion in steels and guides the design of hydrogen-resistant alloys.
The methodology can be extended to explore other alloying elements' impacts, advancing theoretical
foundations for high-strength low-alloy steel development. Yang Xufeng[11] proposed a Bayesian
neural network (BNN) model for estimating P-S-N curves to predict metallic material fatigue life. By
treating neural network weights as stochastic variables and employing Bayesian posterior distribution
estimation, the BNN model not only predicts outcomes but also quantifies prediction uncertainties.
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This work expands machine learning applications in materials science while offering new perspectives
for structural fatigue life analysis. Liu Shi and Huang Jiawei et al.[12] implemented deep potential (DP)
models—a deep neural network-based interatomic potential—in ferroelectric material research. Their
work demonstrated DP's efficacy in studying HfO₂-based ferroelectrics and classical perovskite
systems, revealing microscopic mechanisms behind ultrahigh O²⁻ mobility in ferroelectric HfO₂ and
flexoelectric/pyroelectric effects at SrTiO₃ polar domain boundaries. The DP framework significantly
enhances simulation accuracy and efficiency, providing theoretical guidance for ferroelectric material
design.

2.5 Applications of Artificial Intelligence in Emerging Materials

The application of AI technologies is expanding across diverse domains of electrical engineering
materials, transcending limitations to specific material classes. By leveraging machine learning models
and big data analytics, researchers can systematically analyze material properties from multifactorial
perspectives, predict material behaviors, and deliver comprehensive guidance for material discovery,
design, and application. These AI-driven approaches not only enhance research efficiency but also
unlock novel possibilities for advancing electrical material science.

Delchere Don-tsa1[13]et al.employed supervised machine learning models integrated with density
functional theory (DFT)-based high-throughput computations to predict Seebeck coefficients, electrical
conductivities, and power factors of inorganic compounds. Their analysis revealed a strong correlation
between thermoelectric performance and effective mass, leading to a machine learning model with
95% accuracy in identifying high-performance thermoelectric materials. This cluster-based predictive
framework demonstrates exceptional robustness and precision in thermoelectric property evaluation,
offering critical insights for optimizing thermoelectric material selection. Anna Stepashkina’s team [14]

investigated the influence of mechanical deformation (tensile strain) on electrical conductivity by
developing a Boltzmann statistics-based predictive model, subsequently enhanced through coefficients
derived from ensemble regression machine learning. Using composite films comprising polypropylene
(PP) matrices, rubber, and carbon fillers (carbon black-CB, carbon nanofibers-CNF), they measured
volume resistivity via four-probe methods to construct experimental datasets. The CatBoost regression
algorithm was implemented to optimize Boltzmann-derived expressions for predicting resistance
increases under operational stretching. Experimental validation demonstrated high-precision
predictions of tensile-induced resistivity changes in thin-film materials. This methodology provides
innovative strategies for forecasting conductivity degradation under mechanical stress.

3. Conclusions

AI technologies exhibit transformative potential in electrical material science, enabling
accelerated material screening, precise property prediction, and substantial reductions in experimental
costs and timelines. While conventional black-box models achieve high predictive accuracy, they often
fail to elucidate the physical essence of material behaviors. Future advancements necessitate hybrid
frameworks merging symbolic AI with deep learning—models that synergize data-driven insights with
physical constraints.

Next-generation breakthroughs will emerge from integrated workflows combining
high-throughput computations, automated experimental platforms, and reinforcement learning
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algorithms. The convergence of materials informatics, computational chemistry, and AI is dissolving
traditional disciplinary boundaries. Quantum machine learning may redefine paradigms for electronic
structure calculations, while topological data analysis tools could unveil global optimization pathways
for material properties. Such interdisciplinary progress demands not only algorithmic innovation but
also standardized systems for cross-domain knowledge representation.

The AI-driven theoretical reconfiguration of electrical materials science represents a revolutionary
upgrade in human cognitive tools. From multidimensional correlation mining to cross-scale modeling,
and from inverse design to autonomous experimentation, AI is redefining the epistemological
dimensions and methodological frameworks of materials research. Future theoretical breakthroughs
will transcend singular technological optimizations, instead focusing on human-AI collaborative
paradigms: researchers contribute physical intuition and creative hypotheses, while AI navigates
high-dimensional parameter spaces and deciphers complex systems. This symbiotic relationship may
catalyze a "fourth paradigm" in materials science, unlocking unprecedented theoretical frontiers for
performance breakthroughs and functional innovations in electrical materials.
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