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Abstract:Character animation, which aims to generate dynamic character videos from static images,
has gained significant attention in recent years. Despite the advances in diffusion models, which have
established themselves as the leading approach in visual generation tasks due to their strong
generative capabilities, challenges remain in the domain of image-to-video synthesis, particularly in
character animation. The preservation of temporal consistency and the retention of fine-grained
character details across frames continue to pose significant obstacles. In this work, we propose a novel
framework specifically designed for character animation, leveraging the potential of diffusion models.
To address the challenge of maintaining intricate appearance details from the reference image, we
introduce ReferenceNet, a network that integrates detailed features using spatial attention mechanisms.
To enhance controllability and ensure smooth motion transitions, we present an efficient pose guide
that directs the character's movements and incorporate an effective temporal modeling strategy to
facilitate seamless inter-frame consistency. Our framework is capable of animating arbitrary
characters by expanding the training data, outperforming existing image-to-video methods in
character animation tasks. Experimental evaluations on benchmark image animation datasets
demonstrate that our approach achieves state-of-the-art performance, setting a new standard for this
domain.
Keywords: AI, Image recognition, video generation, diffusion model, dynamic video

1. Introduction
Character animation, which involves transforming static character images into dynamic videos that

follow specific pose sequences, holds immense potential across various domains, including online
retail, entertainment, artistic production, and virtual characters. Since the introduction of Generative
Adversarial Networks (GANs) [1, 11, 22], numerous studies have explored the challenges of image
animation and pose transfer [7, 33, 37-39, 57, 61, 64]. Despite significant progress, issues such as local
distortions, blurred details, semantic inconsistencies, and temporal instability continue to hinder the
widespread adoption of these approaches in practical applications.

In recent years, diffusion models [14] have emerged as a powerful tool in generating high-quality
images and videos. Researchers have begun exploring their potential for human image-to-video tasks,
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leveraging the robust generative capabilities of pretrained diffusion model architectures. For instance,
DreamPose [21] focuses on fashion image-to-video generation, enhancing Stable Diffusion [34] by
integrating features from CLIP [31] and VAE [24] to synthesize realistic results. However, DreamPose
requires fine-tuning on input samples for consistency, which impacts operational efficiency. Similarly,
DisCo [47] investigates human dance generation by modifying Stable Diffusion and utilizing CLIP for
character features and ControlNet [60] for background features. Despite these advancements,
challenges remain in maintaining character details and addressing issues like inter-frame jitter.

Additionally, current research in character animation often targets specific tasks or datasets, limiting
the ability to generalize across different applications. While text-to-video models [2, 19, 29, 32, 34, 36]
have made significant strides in visual quality and diversity, methods extending this approach to
image-to-video synthesis [8, 12, 48, 63] still struggle with capturing fine-grained details from the
source image. These methods tend to offer greater diversity but lack the precision necessary for
character animation, leading to inconsistencies in appearance and temporal variations in character
details. Furthermore, when faced with large or complex movements, these approaches struggle to
produce stable, continuous animations.

To address these issues, we introduce Animate Anyone, a novel method capable of converting
character images into animated videos controlled by specific pose sequences. Our approach builds on
the Stable Diffusion (SD) architecture, utilizing its network design and pretrained weights, and extends
the denoising UNet [35] to handle multi-frame inputs. To preserve appearance consistency, we propose
ReferenceNet, a specialized symmetrical UNet structure designed to capture spatial details from the
reference image. At each layer of the UNet, features from ReferenceNet are integrated into the
denoising UNet using spatial attention [46], allowing the model to effectively maintain consistency in
appearance across frames.

For pose controllability, we develop a lightweight pose guider that efficiently incorporates pose
signals into the denoising process. To ensure smooth temporal motion, we introduce a temporal layer
that models relationships between frames, enabling stable and continuous transitions. This approach not
only preserves high-resolution details but also generates animations with fluid motion across multiple
frames.

We train our model on an internal dataset of 5,000 character video clips. Figure 1 showcases the
animation results for various characters, demonstrating the effectiveness of our approach. Compared to
previous methods, our method offers several advantages: it maintains both spatial and temporal
consistency, produces high-definition videos without jitter or flickering, and can animate any character
image, regardless of domain constraints. We evaluate our method on three distinct human video
synthesis benchmarks—the UBC fashion video dataset [59], the TikTok dataset [20], and the Ted-Talk
dataset [39]—and show that our method outperforms existing techniques. Additionally, when compared
with other image-to-video methods trained on large-scale datasets, our approach demonstrates superior
results in character animation. We believe that Animate Anyone has the potential to serve as a
foundational tool for character video creation, paving the way for the development of more innovative
and creative applications in the field.
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Figure 1. Consistent and Controllable Character Animation. Given a reference image (the leftmost
image in each group), our method demonstrates the ability to animate a wide range of characters. It
produces high-quality, temporally stable videos while preserving the visual consistency of the reference
character’s details.

2. Related Works
2.1 Diffusion Models for Image Generation

In recent years, diffusion models have emerged as the dominant approach in the field of
text-to-image generation, offering superior results in terms of image quality and realism. These models
rely on iterative denoising processes that enable them to synthesize high-fidelity images, making them
a key tool in the image generation landscape. To enhance computational efficiency without sacrificing
output quality, the Latent Diffusion Model (LDM) [34] proposes working in a lower-dimensional latent
space, which reduces the computational load while still achieving high-quality results.

Recent advancements in controlling the generative process have led to the development of models
such as ControlNet [60] and T2I-Adapter [27], which integrate additional encoding layers to provide
more precise control over visual attributes, including pose, depth, and other fine-grained features. This
has greatly expanded the range of controllable outputs, enabling targeted generation based on specific
input conditions. For example, the IP-Adapter [56] enables diffusion models to generate images that
adhere to specific criteria derived from a given input prompt, thus improving flexibility in content
generation.

Additionally, several works have focused on enhancing image editing capabilities within the
diffusion framework. ObjectStitch [42] and Paint-by-Example [53] leverage the CLIP [31] model to
refine the generated images, guiding them with specific semantic conditions. Meanwhile,
TryonDiffusion [65] applies these models to the virtual clothing try-on domain, introducing a
Parallel-UNet structure to allow for realistic garment fitting and visualization.

2.2 Diffusion Models for Video Generation
Building on the success of diffusion models in image generation, there has been a significant push
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towards adapting these methods for video synthesis. Many of these approaches extend the structure of
text-to-image models by incorporating temporal components, which allow the models to generate
coherent video sequences. Some studies [10, 16, 17, 23, 26, 30, 40, 52, 54] have explored incorporating
inter-frame attention mechanisms into diffusion models to capture temporal dependencies between
video frames. By introducing temporal layers into pre-existing text-to-image models, these methods
seek to enable video generation while maintaining continuity across frames.

One such effort, VideoLDM [4], first pretrains the model on image data and subsequently fine-tunes
it by introducing temporal layers for video generation. This method demonstrates how pretrained
models can be extended to handle video sequences, while also addressing the need for efficient training.
Similarly, AnimateDiff [12] introduces a motion module that can be integrated into a variety of
text-to-image models, enabling them to generate dynamic video content without requiring extensive
fine-tuning.

A related approach is the extension of text-to-image models to image-to-video generation, which
has been explored in various studies. For instance, VideoComposer [48] introduces images as
conditional inputs during training, allowing for the generation of videos that remain consistent with the
original images. Similarly, AnimateDiff [12] uses a weighted mixture of image latent representations
and random noise to generate more controlled video sequences. VideoCrafter [8] incorporates both
textual and visual features from CLIP [31], using cross-attention mechanisms to better integrate these
inputs into video synthesis. While these methods have made significant strides in video generation,
challenges remain in achieving stable, high-quality human video synthesis, particularly when
incorporating image conditions into the process.

2.3 Diffusion Models for Human Image Animation
Human image animation, the task of generating animated sequences or videos from static images,

has been a major focus of recent research. Leveraging the strengths of diffusion models in image
generation, several approaches have been developed to address the unique challenges of human pose
transfer and animation. These methods aim to synthesize realistic human movements while maintaining
visual consistency across frames.

For example, PIDM [3] introduces a texture diffusion block that allows for the incorporation of
specific texture patterns during denoising, improving the quality of human pose transfer. Similarly,
LFDM [28] synthesizes optical flow sequences in the latent space, allowing the model to warp input
images according to motion parameters specified by the user. LEO [49] proposes representing human
motion as a sequence of flow maps, which the diffusion model uses to generate smooth motion
transitions.

Another notable approach, DreamPose [21], builds on the pretrained Stable Diffusion model and
proposes an adapter that leverages CLIP and VAE embeddings to enhance pose transfer capabilities.
DisCo [47] takes inspiration from ControlNet, decoupling the control of pose and background, which
allows for greater flexibility in generating complex animations.

Despite these advances, the integration of diffusion models into human image animation still faces
several challenges. These include issues such as texture inconsistency across frames and the difficulty
in maintaining temporal stability, leading to visual artifacts like jitter and flickering. Furthermore, the
generalization of these models across various human animation tasks, while preserving fine details,
remains an open research problem. Current methods still struggle to handle the complex relationships
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between pose, appearance, and temporal continuity in human image animation, suggesting the need for
more robust models that can handle diverse animation tasks while maintaining high quality.

3. Methods
This work focuses on pose-guided image-to-video synthesis for character animation. Given a

reference image that describes the appearance of a character, along with a sequence of poses, our model
generates an animated video of the character. The overall pipeline of our approach is depicted in Figure
2. In this section, we first provide a brief overview of Stable Diffusion in Section 3.1, which serves as
the foundational framework for our method. Section 3.2 details the specific design choices and
architectural components of our model, and Section 3.3 outlines the training strategy employed for
optimization.

Figure 2. Overview of Our Method. The proposed method begins by encoding the pose sequence
using the Pose Guider, which is then fused with multi-frame noise. The Denoising UNet performs the
denoising process to generate video frames, with its computational blocks comprising Spatial-Attention,
Cross-Attention, and Temporal-Attention, as depicted in the dashed box on the right. The integration of
the reference image involves two components: (1) extracting detailed features via ReferenceNet for
Spatial-Attention, and (2) extracting semantic features via the CLIP image encoder for Cross-Attention.
Temporal-Attention operates across the temporal dimension to ensure smooth motion transitions.
Finally, the VAE decoder reconstructs the latent representations into video clips.

3.1. Preliminary: Stable Diffusion
Our method is an extension of Stable Diffusion (SD), which itself is derived from the Latent

Diffusion Model (LDM). SD aims to reduce the computational complexity of image generation by
performing feature distribution modeling in a lower-dimensional latent space.

The core of SD is its autoencoder [24,45], which includes an encoder ℰ and a decoder �. The

encoder maps an image x to a latent representation z = ℰ x , and the decoder reconstructs the image

from this latent representation x� = � z . In the SD framework, a noise vector is progressively
denoised through multiple timesteps to recover the original image. The process starts by generating a
noisy latent representation zt at timestep t, and a denoising U-Net model is trained to predict the noise
added at each timestep. The objective function for the training process is defined as:
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ℒ = �x,ϵ,t ϵ − ϵ�θ zt, c, t

where ϵ�θ denotes the denoising function, c represents the conditional embeddings (e.g., text

prompts), and t is the timestep. The denoising U-Net architecture typically includes four downsampling
layers, a middle layer, and four upsampling layers. Each block within these layers incorporates 2D
convolutions, self-attention [46], and cross-attention (often referred to as a Res-Trans block).
Cross-attention is used to fuse the text embeddings with the visual features in the network. During
inference, a random latent vector z0 is sampled from a Gaussian distribution, and denoising proceeds
in a deterministic fashion through methods like DDPM [14] or DDIM [41]. The U-Net model
iteratively predicts the noise at each timestep, and the final latent representation z0 is decoded back
into the image space.

3.2. Network Architecture
The architecture of our model is depicted in Figure 2. The network receives multi-frame noisy

inputs, and the denoising U-Net is based on the design of Stable Diffusion. It uses the same structural
components and shares pre-trained weights from SD. In addition, we introduce three critical
components to enhance the generation process: 1) ReferenceNet, which encodes the appearance
features of the character from the reference image, 2) Pose Guider, which encodes the motion control
signals for producing controllable character movements, and 3) Temporal Layer, which captures
temporal dependencies to ensure continuity of character motion across frames.

3.2.1. ReferenceNet
In contrast to text-to-image models, which only require semantic relevance between the input text

and generated images, image-to-video tasks demand precise consistency in visual details. Traditional
image-driven methods, such as those using CLIP image encoders [8, 21, 42, 47, 53, 56], suffer from
detail inconsistency because the CLIP image encoder processes low-resolution images (224x224),
which leads to the loss of fine-grained features. Furthermore, CLIP was trained to match semantic
features for text-to-image generation, not to preserve the detailed structures of images.

To address these limitations, we propose ReferenceNet, an image feature extraction network
specifically designed to capture the fine-grained details of the reference image. ReferenceNet shares
the same architecture as the denoising U-Net, but without the temporal layer. It also inherits the
pre-trained weights from the original SD model, and its parameters are updated independently during
training.

The features from ReferenceNet are integrated into the denoising U-Net by replacing the
self-attention layer with a spatial-attention layer. Specifically, the feature maps ciR from the denoising
U-Net and zeR from ReferenceNet are concatenated along the spatial dimension w ,and a self-attention
mechanism is applied to the concatenated map. This design allows the U-Net to selectively learn
features from ReferenceNet that align with the spatial features of the target image. In this way,
ReferenceNet acts as a reference model, ensuring that highlevel features from the source image are
preserved in the output.

3.2.2. Pose Guider
In contrast to ControlNet [60], which introduces control features such as depth and edges into the

denoising U-Net through zero convolutions, we employ a lightweight Pose Guider to control the
motion of the character. The Pose Guider comprises four convolutional layers with 4x4 kernels and 2x2
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strides, with increasing channel sizes (16, 32, 64, 128). It aligns the pose image with the resolution of
the latent noisy input and injects this processed pose information directly into the denoising U-Net.
This approach maintains computational efficiency while offering high flexibility in controlling the
character’s movement.

3.2.3. Temporal Layer
To ensure temporal consistency across video frames, we introduce a Temporal Layer, which

incorporates temporal attention into the model. Previous works have demonstrated the importance of
modeling temporal dependencies in text-to-image models to facilitate videc generation. Our temporal
layer is integrated into the Res-Trans blocks of the denoising UNet, specifically after the

spatial-attention and cross-attention components.lt reshapes the feature map c ∈ ℝ b×ℎ×w×c to c ∈

ℝ b×ℎ×w ×t×c and performs self-attention along the temporal dimension t. The output of the temporal

layer is then fused with the original feature map through a residual connection. The temporal layer
captures the motion dynamics of the character across frames, ensuring smooth transitions and
maintaining consistency in the appearance details. The Pose Guiden already ensures continuous
character movement, so the temporal layer primarily serves to enforce temporal smoothness,
eliminating the need for complex motion modeling

3.3. Training Strategy
Our training procedure follows a two-stage process. In the first stage, we train the model using

individual video frames. The denoising U-Net is initialized with pre-trained weights from Stable
Diffusion, and the ReferenceNet and Pose Guider are trained alongside it. During this phase, the
temporal layer is excluded from the model, and the input consists of single-frame noise. The
optimization objective is to generate high-quality images that match the reference image and the target
pose. The reference image is randomly selected from a video clip to guide the generation process.

In the second stage, we introduce the Temporal Layer into the model, initialized with pre-trained
weights from AnimateDiff [12]. During this phase, we use video clips consisting of 24 frames as input,
and only the temporal layer is trained, with the weights of the denoising U-Net, ReferenceNet, and
Pose Guider kept fixed. This stage ensures that the model learns to maintain temporal consistency
across frames while preserving the fine-grained details of the character’s appearance.

Table 1: Quantitative Comparison for Fashion Video Synthesis

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

MRAA [35] 0.749 24.07 0.212 253.6

TPSMM [62] 0.746 34.75 0.213 247.5

BDMM [54] 0.918 36.01 0.048 148.3

DreamPose [45] 0.885 38.49 0.068 238.7

DreamPose* 0.879 38.49 0.095 279.6

SD-2V 0.894 0.931 0.111 175.4
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Ours 0.932 38.47 0.041 81.5

Table 2: Quantitative Comparison for Human Dance Generation

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

FOMM [45] 0.648 29.01 0.335 405.2

MRAA [31] 0.672 29.39 0.296 284.8

PSMM [47] 0.673 29.18 0.299 306.1

Disco [35] 0.668 29.03 0.292 292.8

SD-2V 0.67 29.11 0.295 225.5

Ours 0.720 29.51 0.289 171.1

Table 3: Quantitative Comparison on Ted-Talk Dataset

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

MRAA [31] 0.826 33.86 0.16 82.8

TPSMM [58] 0.83 33.81 0.157 80.7

Disco [43] 0.754 31.25 0.193 223.5

SD-2V 0.773 32.11 0.179 158.3

Ours 0.829 33.89 0.157 80.6

Table 4: Quantitative Comparison for Image Condition Modeling

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

CLIP Image Encoder Only 0.89 36.29 0.105 173.2

Fine-tuning SD and Training

ControlNet
0.902 37.12 0.098 161.3

Integration of Both 0.931 38.49 0.044 81.6

ReferenceNet (Our Design) 0.930 38.48 0.043 81.4

Table 5: Quantitative Results for ReferenceNet Design

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

Replacing UNet (SD Weights) with

ResNet (ImageNet Weights)
0.897 36.79 0.11 189.2

Replacing Spatial-Attention with

Feature Concatenation
0.912 37.85 0.089 134.1
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Our Design (ReferenceNet) 0.929 38.61 0.067 83.6

Table 6: Quantitative Results for Temporal Modeling

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓

No Temporal Layer

(Concatenating Images

Temporally)

0.876 35.71 0.128 275.4

No Two-Stage Training 0.902 37.11 0.101 204.5

Two-Stage Training (Our

Approach)
0.920 38.01 0.067 83.6

4. Experimental result verification
4.1. Implementations

To evaluate the effectiveness of our approach for animating various characters, we collected a
dataset of 5,000 character video clips from the internet for model training. We used DWPose [55] to
extract pose sequences of characters in the video, including both body and hand poses, and rendered
these as pose skeleton images following the OpenPose method [6].

The experiments were conducted on 4 NVIDIA A100 GPUs. In the first training stage, individual
video frames were sampled, resized, and center-cropped to a resolution of 768×768 pixels. The model
was trained for 30,000 steps using a batch size of 64. In the second training stage, the temporal layer
was trained for 10,000 steps using 24-frame video sequences with a batch size of 4. Both stages
employed a learning rate of 1e-5.

During inference, the length of the driving pose skeleton was rescaled to approximate the length of
the character’s skeleton in the reference image. A DDIM sampler was used for 20 denoising steps. To
generate long video sequences, we adopted the temporal aggregation method from [43], which
connects results from different batches.

For a fair comparison with other methods, we also trained our model on three established
benchmarks: the UBC fashion video dataset [59], the TikTok dataset [20], and the Ted-Talk dataset [39],
without using additional data, as discussed in Section

4.2. Qualitative Results
Figure 3 demonstrates that our method can animate a variety of character types, including full-body

human figures, half-length portraits, cartoon characters, and humanoid figures. The approach is capable
of generating high-definition, realistic character details while maintaining temporal consistency with
the reference images, even under significant motion. Additionally, the model exhibits smooth temporal
continuity between frames, effectively preserving the dynamics of character movements.
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Figure 3. Qualitative Results. Given a reference image (the leftmost image in each group), our
approach demonstrates the capability to animate a variety of character types, including full-body
human figures, half-length portraits, cartoon characters, and humanoid figures. The figure illustrates the
results, highlighting clear and consistent character details, as well as continuous motion between
frames

-

Figure 4. Qualitative Comparison for Fashion Video Synthesis. While other methods struggle to
preserve the fine-textured details of clothing, our approach stands out by effectively maintaining
high-quality, detailed features throughout the video.
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Figure 5. Qualitative Comparison between DisCo and Our Method. DisCo shows issues such as
errors in pose control, color inconsistencies, and loss of detail. In contrast, our method significantly
improves upon these aspects, delivering more accurate and consistent results.

Figure 6. Qualitative Comparison on the Ted-Talk Dataset. Our model generates more accurate and
clearer results, demonstrating superior performance compared to other methods.

Figure 7. Qualitative Comparison with Image-to-Video Methods. These methods face difficulties in
generating substantial character movements and struggle with maintaining long-term appearance
consistency.
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4.3. Comparisons
To evaluate the performance of our approach, we conducted quantitative comparisons using three

specific benchmarks: fashion video synthesis, human dance generation, and talking gesture generation.
We also compared our method against a baseline that integrates Stable Diffusion, ControlNet,
IP-Adapter [56], and AnimateDiff, referred to as SD-2V.

Fashion Video Synthesis

Experiments were conducted on the UBC fashion video dataset, and the quantitative comparison is
presented in Table 1. Our method outperforms other approaches, especially in terms of video metrics.
Notably, our method shows significant improvements in terms of SSIM, PSNR, LPIPS, and FVD.
Qualitative results, shown in Figure 4, highlight that other methods struggle to maintain the consistency
of clothing details, resulting in noticeable errors in color and structure. In contrast, our approach
effectively preserves fine-grained clothing details, which is crucial in fashion video synthesis.

Human Dance Generation

For human dance generation, we conducted experiments on the TikTok dataset. Table 2 presents
the quantitative comparison, where our method demonstrates superior performance in terms of SSIM,
PSNR, LPIPS, and FVD. This demonstrates the model ’s ability to generalize well, even without
incorporating pre-trained human attribute data, unlike DisCo, which uses a large set of images for
pre-training.

Qualitative comparisons are shown in Figure 5, where our method excels at maintaining visual
continuity in intricate dance sequences and handles diverse character appearances with greater
robustness.

Talking Gesture Generation

We evaluated our method on the Ted-Talk dataset for talking gesture generation. As shown in
Figure 6 and Table 3, our method significantly outperforms DisCo and SD-2V, achieving better results
using only pose information. In contrast, other methods relying on ground truth (GT) images as
driving signals (such as MRAA and TPSMM) perform worse, especially on more intricate datasets like
UBC (with detailed clothing textures) and TikTok (with complex human movements).

General Image-to-Video Methods

To assess the ability of general image-to-video methods, we compared our approach with two
popular methods: AnimateDiff [12] and Gen2 [10]. These methods do not use pose control, so the
comparison focuses on their ability to maintain the appearance fidelity of reference images. As shown
in Figure 7, both AnimateDiff and Gen2 face difficulties in generating substantial character movements
and maintaining long-term appearance consistency across frames, which limits their ability to support
consistent character animation over time.
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4.4. Ablation Study
To investigate the effectiveness of specific design choices in our method, we conducted an ablation

study on the UBC fashion video dataset, exploring the following alternatives:

1.Using only the CLIP image encoder to represent reference image features, without integrating
ReferenceNet.

2.First fine-tuning Stable Diffusion and then training ControlNet with the reference image.

3.Combining the above two approaches.

The results, presented in Figure 8 and Table 4, demonstrate that the ReferenceNet design
outperforms the alternatives. Relying solely on CLIP features for reference image representation
preserves image similarity but fails to transfer fine details effectively. Meanwhile, ControlNet alone
does not enhance the results, as its features lack the necessary spatial correspondence, rendering it
ineffective.

We also conducted experiments to evaluate the effectiveness of the ReferenceNet design by
replacing UNet (SD weights) with ResNet (ImageNet weights), and replacing spatial-attention with
feature concatenation. The results, shown in Table 5, demonstrate that utilizing SD weights and
spatial-attention is crucial for optimal performance, as these elements improve the integration of
conditioning information during the generation process.

In terms of temporal modeling, we assessed two alternatives: 1) omitting the temporal layer and
concatenating images temporally to create videos, and 2) skipping the two-stage training process and
training the entire network simultaneously. The quantitative results in Table 6 indicate that omitting the
temporal layer results in noticeable texture sticking and inter-frame jitter, which significantly reduces
FVD scores. Additionally, skipping the two-stage training process leads to a decline in image quality, as
the network tends to focus on overall temporal coherence at the expense of fine details in individual
frames. The two-stage training method ensures both high-quality video frames and temporal
smoothness.

5. Discussion and Conclusion
The proposed model, Animate Anyone, demonstrates the ability to transform static character images

into animated videos guided by specific pose sequences. While effective, it faces limitations such as
challenges in stabilizing hand movements, occasional distortions or motion blur, and difficulties in
generating unseen parts of characters due to the single-view nature of input images. Additionally, the
utilization of DDPM introduces lower operational efficiency compared to non-diffusion-based methods.
Despite these limitations, the framework's ReferenceNet ensures intricate detail preservation, efficient
pose control, and temporal continuity, outperforming existing approaches. However, its potential
misuse for creating manipulated videos raises ethical concerns, which can be mitigated through face
anti-spoofing techniques.
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